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In this study, we present a comprehensive comparison of two powerful analytical techniques, Aboodh
Adomian decomposition method (AADM) and homotopy perturbation transform method (HPTM), for obtaining
series solutions of nonlinear partial differential equations, specifically focusing on Camassa—Holm (CH) and
Degasperis-Procesi (DP) equations. These equations are widely used to describe various nonlinear wave
phenomena in fluid mechanics, optical fibers, and other applications. By applying both AADM and HPTM to
CH and DP equations, we demonstrate the effectiveness and efficiency of each method in terms of accuracy,
convergence, and computational complexity. Furthermore, we provide a detailed analysis of the series solutions
obtained by each method and discuss their respective advantages and limitations. The results reveal that
both methods are capable of providing accurate and convergent series solutions for the considered equations.
However, AADM shows a slightly better performance in terms of convergence rate and ease of implementation,
making it a preferable choice for solving CH and DP equations. This comparative study serves as a useful
reference for researchers and practitioners working in the field of nonlinear partial differential equations and
their applications.

Introduction such as anomalous diffusion, viscoelasticity, and electrical conduction
in complex media. This field of study has grown rapidly over the

The development of fractional calculus dates back to the 17th
century, with the works of mathematicians such as Leibniz, Euler, and
Laplace. However, it was not until the mid-20th century that fractional
differential equations (FDEs) began to be used in scientific research.
Since then, many researchers have studied FDEs and their applications,
leading to the development of various methods and techniques for

last few decades, with applications in physics, engineering, biology,
and finance, among others. In this article, we will explore the basic
concepts of fractional calculus and fractional differential equations,
their properties, and some of their applications [11-14].

The study of fractional calculus has gained significant attention

solving them [1-5]. Fractional differential equations are a powerful tool
for modeling complex phenomena that cannot be adequately described
by ordinary differential equations [6-10]. They are a generalization of
classical calculus, allowing for the use of fractional derivatives instead
of integer derivatives. The use of fractional derivatives opens up a
new world of possibilities, allowing for the modeling of phenomena
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in recent years due to its potential applications in various fields of
science and engineering. Several researchers have explored efficient
and reliable techniques for solving fractional-order physical models and
partial differential equations. In this regard, the works of Shah et al.
have contributed significantly to the development of novel approaches
for analyzing various nonlinear wave phenomena. For instance, in
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their recent publications, they have investigated fractional nonlinear
regularized long-wave models, analyzed the behavior of optical solitons
for nonlinear Schrodinger equations, and compared different analytical
approaches for systems of time fractional partial differential equations.
Furthermore, their work on fractional Kaup-Kupershmidt equations and
Korteweg-De-Vries-type equations under the Atangana-Baleanu-Caputo
operator has provided insights into the modeling of nonlinear waves
in plasma and fluid [15-17]. This paper aims to review some of their
recent contributions to the field of fractional calculus and highlight the
significance of their findings. Specifically, we will discuss their works
on fractional-order physical models involving p-Laplace transform, frac-
tional partial differential equations, and nonlinear Boussinesq equation
under the Atangana-Baleanu-Caputo operator [18-23].

The Camassa—Holm and Degasperis-Procesi equations are two im-
portant nonlinear partial differential equations that have attracted a
lot of attention in the field of applied mathematics and theoretical
physics. The Camassa—-Holm equation was first introduced in 1993 by R.
Camassa and D. Holm to describe the evolution of shallow water waves
in the presence of dissipation and dispersion effects. On the other hand,
the Degasperis-Procesi equation was proposed by A. Degasperis and M.
Procesi in 1999 as a modification of the Camassa—Holm equation to
account for the higher order nonlinearities in the wave propagation.

The solutions of these equations exhibit several interesting proper-
ties, such as the existence of solitons and other localized structures, the
occurrence of wave breaking and rogue waves, and the formation of
complex patterns in the wave profiles. These phenomena have impor-
tant implications in many areas of science and engineering, including
oceanography, fluid mechanics, optics, and nonlinear optics. In this
review, we will provide a brief overview of the Camassa-Holm and
Degasperis-Procesi equations, their mathematical properties, and some
of their recent applications in different fields. We will also discuss
some of the numerical methods and analytical techniques that have
been used to study these equations and their solutions. Finally, we will
highlight some of the open problems and challenges that still remain
in this area of research. In this work, a modified p-equation, which has
the following form, a family of important physical equations, is taken
into consideration. [24]:

°¢(B,v) 9 ,0*¢(p,v) 2 9 (B,v) 9B, v) I*E(P,v)
Err e o )+ B+ 1DE(B,0) p -/ o7 ( o )
4B, v)
—{B.0)——— o =0. (€Y

By selecting a value of f = 3, the mDP model is produced.
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By selecting a value of 2 for g in Eq. (1), the result is the manifestation
of the mCH model.
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In this study, a novel concept is proposed for solving the fractional
mDP and mCH equations using the Caputo operator. The mCH and
mDP models are similar to the incompressible Euler equation and have
been found to be fully integrable with a Lax pair. This model has been
the subject of various numerical studies, with Liu and Ouyang [25]
developing new solitary wave solutions, Dubey et al. [26] proposing a
gq-homotopy analysis approach, Behera and Mehra [27] using a wavelet-
optimized finite difference approach, Kader and Latif [28] employing a
Lie symmetry technique, and Yousif et al. [29] developing two tech-
niques, the homotopy perturbation method and variational iteration
method.
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One of the earliest studies of the fractional DPE (FDPE) was carried
out by Abdeljawad and Baleanu (2014), who derived a generalized
version of the FDPE and investigated its properties [30]. A similar ap-
proach was taken by Wang et al. (2015), who considered the fractional
CHE (FCHE) and showed that it could be used to model shallow water
waves with fractional dissipation [31]. More recently, Abdeljawad et al.
(2019) studied the properties of the fractional-order DPE and CHE
using the Adomian decomposition method [32]. Another interesting
approach to studying the fractional DPE and CHE was taken by Li et al.
(2020), who considered the fractional Fourier transform (FrFT) and
its application to solving fractional partial differential equations [33].
Wang et al. (2017) used the homotopy perturbation method to study
the fractional CHE and showed that it could be used to model shal-
low water waves with fractional dissipation [34]. Abdeljawad et al.
(2017) considered the fractional-order DPE and CHE with Riesz-Feller
derivative, and showed that the solutions could be expressed in terms
of the Riesz-Feller fractional integral [35]. In a different approach,
Yang and Wei (2020) used the variational iteration method to study
the fractional CHE with Riemann-Liouville derivative, and obtained an
analytical solution for the equation [36]. Finally, it is worth noting
that some researchers have also investigated the numerical methods
for solving fractional DPE and CHE equations. For example, Wu et al.
(2017) used the finite difference method to solve the fractional DPE,
and showed that the method was effective in predicting the behavior
of the solution [37]. Similarly, Li et al. (2018) used the spectral method
to solve the fractional CHE, and showed that the method was accurate
and efficient [38]. Overall, the study of fractional-order DPE and CHE
equations is an active and growing area of research, with many recent
studies exploring the properties and behavior of these equations using
various analytical and numerical techniques. These studies suggest
that fractional calculus techniques can provide a powerful and flexible
approach to modeling complex physical phenomena.

Homotopy Perturbation Method (HPM) has gained increasing atten-
tion in the field of engineering and applied mathematics. Researchers
have been exploring ways to enhance the accuracy and efficiency
of this method in solving complex problems. One approach is the
coupling of the HPM with other techniques, such as the Enhanced
Perturbation Method (EPM), as demonstrated by Li XX and He CH
in their paper published in the Journal of Low Frequency Noise, Vi-
bration & Active Control in December 2019. Another example of this
is the modified HPM proposed by N. Anjum et al. for the analysis
of electrically actuated microbeams-based microelectromechanical sys-
tems, which was published in Facta Universitatis Series: Mechanical
Engineering in 2021. In addition, Ji-Huan He and Yusry O. El-Dib
presented the Enhanced Homotopy Perturbation Method (EHPM) for
the axial vibration of strings in the same journal and year. These studies
demonstrate the ongoing efforts to improve the HPM and its variants
for a wide range of applications in engineering and science [39-
41]. The field of fractional calculus has seen significant advancements
in recent years, with researchers developing new methods to solve
complex mathematical problems involving fractional derivatives. One
such promising method is the Aboodh transformation-based homotopy
perturbation method, which has been demonstrated to be effective
in solving fractional calculus problems. In a recent article published
in Frontiers in Physics, Huiqiang Tao, Naveed Anjum, and Yong-Ju
Yang explored the potential of this method and provided evidence of
its success in various applications. In this paper, we will discuss the
Aboodh transformation-based homotopy perturbation method and its
promising prospects for the future of fractional calculus [42].

In the field of mathematical analysis, the Adomian decomposition
method (ADM) and the Homotopy perturbation method (HPM) are
two popular techniques used to solve nonlinear differential equations.
ADM was introduced by George Adomian in 1986, while HPM was
developed by J.H. He in 1999. Both methods have been shown to be
effective and efficient for solving a wide range of nonlinear problems in
various fields such as engineering, physics, and finance. In recent years,
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the ZZ transformation has been introduced as a new tool to improve
the performance of these two methods [43,44]. This transformation
was first proposed by A. Yildirim and H. Kocak in 2011, and it has
been applied to the ADM and HPM to enhance their convergence
and accuracy [45]. The ZZ transformation is a type of power series
expansion that transforms the original nonlinear differential equation
into a linear one, making it easier to solve using the ADM or HPM. In
this paper, we will review the ADM and HPM methods, and we will
also discuss the application of the ZZ transformation in these methods.
We will provide a detailed description of the methods, their advan-
tages, and limitations, and we will present examples to demonstrate
their effectiveness. Additionally, we will analyze the performance of
the methods with and without the ZZ transformation, and we will
compare their results with other existing methods. Overall, this paper
aims to provide a comprehensive overview of the ADM, HPM, and ZZ
transformation, and their applications in solving nonlinear differential
equations.

Fundamental definitions

Definition 1. The Aboodh transform (AT) of a function () is given
as [46,47]

C=1{6:10p)] < Beli¥! if g e (=1)' x[0,00),j = 1,2; (B, py,p, > 0)}
can be defined as

Al0(B)] = M(y)

which is given by

AlO(P)] = i/o 0Be¥Pdp=My), p<w<p

Definition 2. The inverse Aboodh transform of a function 0(f) is
defined as [46,47]

0(p) = A~ M)

Definition 3. The Mittag-Leffler function is a special term that often
occurs naturally in the solution of fractional calculus is given as [46,47]

S 70
E@(Z) = Z m, @,Z (S (C,

=0
In generalized form, it is expressed as follow:

>z,

£
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Definition 4. The fractional AB derivative is a concept that pertains
to the function # € H'(0,1), where 0 < g < 1. The definition of the
fractional AB derivative is as follows [46,47]:

vop = N@ [1 o —p(p =~ x)F

Definition 5. Let # be an element in the Sobolev space H'(0,1) and
let 0 < w < 1, then the fractional AB derivatives can be defined using
the Riemann-Liouville approach [46,47]

B — —
YO & [y, (EEY
L=gdp Jo l-%

The normalization function N(g) satisfies the requirement of being
positive and has the values of N(0) =1 and N(1) = 1.

o BRDF o) =

Theorem 1. The fractional AB operator of Laplace transformation in the
presence of Caputo is given as [46,47]:

N(@p)  s¥F(s) - s#7LF(0)

l-@ sﬁ’+% '

c [ Asc foe(ﬁ)] -
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Additionally, the Laplace transformation of the fractional AB derivative
when utilizing the Riemann-Liouville method is represented as

N %
r [ gBRD?G(ﬂ)] _ N@) S F(s) .
l-p  sp+- £

-
Theorem 2. The Aboodh transformation of a fractional AB operator in
the presence of Caputo can be defined as follows: if M(y) represents the
Aboodh transformation of 6(f) € C and the Laplace transform of 6(8) € C
is 6(s) [46,47]

)
w( 47fop) = N(go)1 (M) v 6©)

—p+ gy
Definition 6. The Aboodh transformation of a fractional AB operator
in the context of Riemann-Liouville is defined as follows: Let M(y)
represent the Aboodh transformation of 6(f) which is an element of C.
Additionally, let 6(s) be the Laplace transform of 6(p) € C [46,47]

N (g@)M(w)

ABR % — —
Mg Dﬂﬁ(ﬂ))—l_p+pw_w.

Procedure of HPTM

The HPTM method is presented as a solution for solving FPDEs.

DEC(B.v) = PyIBIL(B.0) + Ry [BIL(B.v). O<p <1, @
with the initial condition

£(B,0) =&(P).

By applying the AT method, we obtain that D = ;j—i, is a Caputo

operator of order g, and P,[#] and R[] are linear and nonlinear terms
respectively.

ALDE (B, v)] = AIP,[BIC(B. v) + Ry [BIL(B. v)l, (5)

By utilizing the differential characteristic of AT, we obtain

1—g+qu®
N(g)

By utilizing the inverse AT method, we can obtain:

M) = ul(p,0) + < > A[P[PIC(B,v) + Ry [FIC(B.v)].  (6)

1—g+qu®

C(ﬁ,v)=§(ﬁ,0)+A’1[< Np)

> A[P1[BIE(B, v) + Ry [FIE(B, )]
)

By utilizing HPM on Eq. (12), we are able to improve its effectiveness.

0

(B0 =Y 6B (8)

k=0
where the homotopy parameter ¢ € [0, 1].
The non-linear component in Eq. (8) can be expressed as

R[BIE(B, v) = Z e“ Hy (0), )
k=0
The method of obtaining polynomials is described as:
__ 1 ! i
H (oo lpro il = T 1)De [Rl <;§6€ g)]gzo, 10)

k= O
where D¢ = ——.

By combining (14) and (15) with (12), we obtain

0 1_ + _g‘? o
kZ:;)ska(ﬂ, v) ={(B.0)+eXx <A_1 [(%) A{Py I;)kak(ﬁ» v)

+ Ze"Hk(C)}] ) an
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By analyzing the correlation of the coefficient of ¢, we arrive at the
conclusion that

2 &o(Bv) = £(B,0),
el (o)
1 -+ qu®
= [(%) AP [P1Go(B.v) + Ho(c»] :
e & (B,v)
1—g+qu %
= [(%) AP (B.0) + Hl(c»] ,
ek 1 G v)
1—@+ou %
= [(%) APAIG -1 (B.0) + Hk_l(g“»] :

k>0,ke N.
12)

Therefore, the approximation in Eq. (8) takes the form of a series
M
{(pv) = Jim_ ; G(p). 13)

Procedure of ATDM

The following is a presentation of the ATDM method to resolve the
FPDEs:

DFE(B,v) = Py(B,0) + Ry (B, v),

with the initial condition

£, 0)=¢(B).

By performing the AT, the result is as follows:
The notation D¥ = ;u— represents the Caputo operator of order g.
P, and R, refer to linear and non-linear functions, respecti

O<gp<l, 14)

ALDFE(,0)] = AP, (B,0) + R, (B, 0)], 15)
By utilizing the differentiating attribute of AT, we obtain

B 1—@+qu®
M (u) = ul(B,0) + < N > A[Py(B,v) + R (B, )], 1e)
By utilizing the inverse AT method, we have the ability to

1—g+qu®
N(%)
The solution for breaking down ¢(,v) is:

C(ﬁ,v)=C(ﬂ,0)+A71[< >]A[7’1(ﬂ,v)+7€1(ﬂ,v)]- @a7)

EBv) =Y EulB0). as)

m=0

The nonlinear component in Eq. (19) can be depicted as
Ri(B,0) = Y A Q). 19

m=0
with

Am(C()sChCz,...,g’m)
= [a,fm {R1<Zf Cm )}]f_o, m=0,1,2,... (20)

By combining sources (24) and (26) in (23), we have obtained

_ l—@+@u‘5“>
z 0) = 0+ A L R SR
:OCm(ﬂ v) =§(,0) + < N(@)

Results in Physics 50 (2023) 106549

x [A {Pl <Z En(P. v)) + Am@)}] : 1)
m=0 m=0

Thus we get

&, v) = £(5,0), 22)
1—g+gu?

L(pov) = A7 [(%) ALP(&) +A0}] ,

In general, when m is greater than or equal to 1, we observe that

_ —%
Cns1(B0) = Al [(M

Application
Example

Consider the fractional mDP equation is given as
9, 0%¢(p,v) 9¢(B,v)  9*¢(B,v)

PLpY) 2 0B
e a0l o TP 3 )

*¢(B,v)
—<¢(B.v) o

=0, 0<gp<l1, (23)

with the initial condition

B

£(B,0) = sechz( )

Applying the AT, we get

o 2 s e e
A<W§> [a( PLOD, 42 ) KO | 0P0) PP
+£(B,v)

op? ap op ap?
(24

P, v)]
o’

By utilizing the differentiating aspect of AT, the result can be obtained

1- —% 0% a
M(u)=u¢<ﬁ,0>+<%> [d< RSO L
0L(p.v) *L(P.v)
+3 7 ( o )
P¢(B,v)
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By utilizing the inverse AT method, we are able to

0 0%C(B,v)
) {4 mrse
0*¢(p,v)
)+ ¢(B,v) FYE ]}]
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With the use of the HPM method, we have been able to

3 1—@+ -5
kZOS S (B, U)—(— sechz(ﬂ))+< -1 [ <5;’V(—@5"’)">
Z kO 0 (B, v))
()v op?
g (ﬁ U) 0 ag (ﬂ U) aZC (ﬂ,l))
_42 ka(ﬂ )Z k k > 32 k k z k ;ﬂz

S}
=0 = o
27)

By analyzing the relationship between the coefficient of ¢, we can
deduce that

B

6B =—— 3 sec ch’(% )
- _ 4l —so+sou*ﬁ’ 9 0°%(B.v)
e 5= ( ( N@) )A [00(—6ﬁ2 )
&y (B,
—482(p.0) §°;£ v
08y(B,0) 0% (B, v) 0°5o(B,v)
37( o + (B 0)——— o ])

__ Sy aint6f P pvf
= —450 csch (ﬂ)smh<2><1 @+F(ga+l)>

In conclusion, the outcome of the series is presented as follows:
{(B,v) = (B, v) + £ (B, 0) + -

By =—-= sechz(ﬂ ) — 450 csch’(B) smh6<g >
v?
8 <1_5°+ r<@+1>> "

Utilizing the ATDM

Applying the AT, we get

%¢ a 9°¢(B.v) 2 9¢(B,v) 0@’(17 v) 9*¢(B,v)
A{dv_?a} [ ( o ) —4¢(B,v) o7 +3 o7 o )
3¢(p.v)
+£(B,v) o ] (28)

By utilizing the differentiating characteristic of AT, it is possible to
obtain the desired result.

1 _,[o 0%¢B.v a¢ (B, v)
W{M(u) u(p,0)} = A [ ( o5 ) —4¢%(B,v) 2
N(g)
3966, 0) (B v) 3¢(p,v)
+3 28 — (= o5 )+ ¢, 0) ik
(29)
3 -+ pu® 0 0*(p.v) 2, 0L(B,0)
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(30)
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Utilizing the inverse AT method, we possess

1- —§
£(B,0) = ¢(B,0)+ A7 [(M) { [g(a (B0,

N(g) ap?
— 4.0 0
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The approximation in the form of a series is expressed as
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C,, are the Adomian polynomials which shows the

33)
Comparing both sides leads to the derivation of the recursive algorithm:
a0 =~ seen’ (D),
Onm=0
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2 I'(g+1)
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Lastly, the outcome in the form of a series is expressed as
) — 450 csch’ (B) sinh® (

gov?
X (1—@+ F(go+1>>+

Therefore, when ¢ equals 1, the precise outcome is obtained

¢(B,v) = —% [sech2 %(ﬂ - %v)] . (34)

In Fig. 1, a comparison of the analytical and exact solutions at
% = 1 for the Degasperis-Procesi equation is presented. Subfigure (a)
illustrates the analytical solution obtained using methods like AADM
and HPM, while subfigure (b) displays the exact solution for Example 1.
The close resemblance between these two plots indicates the effective-
ness of the applied methods in approximating the exact solution. Fig. 2
showcases the comparison of exact and different fractional order ana-
lytical solutions for Example 1, where subfigures (a) and (b) represent



K. Zhang et al.

((B,v)
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(b)

Fig. 1. Comparison of analytical and exact solutions at g =1 (a) the analytical solution of the Degasperis-Procesi equation; (b) the exact solution of Example 1.

Fig. 2. Comparison of exact and different fractional order analytical solutions (a) g = 0.75 and (b) 1 of Example 1.

Table 1
Comparison of our methods and exact solution at g = 1 in addition with absolute error
(AE).

v=0.01 Exact solution Our methods solution AE of our methods
B =1 =1 p=1

1 —1.49154 -1.50142 2.3242749190E-03
2 —-0.80253 —0.80532 3.8063761200E—04
3 —0.34656 —0.34432 3.5881918040E—-04
4 —-0.13570 —0.13432 2.5532137270E-04
5 —-0.05110 —-0.05070 1.1467922480E—-04
6 —-0.01896 —-0.01872 4.5230501860E-05
7 —0.00699 —0.00690 1.7063410780E—-05
8 —-0.00257 —-0.00255 6.3352901930E-06
9 —0.00094 —0.00089 2.3385053310E-06
10 —0.00034 —0.00034 8.6135638670E—-07

the solutions at g = 0.75 and 1, respectively. The graphical compar-
ison reveals the accuracy of the fractional order analytical solutions,
demonstrating the adaptability and success of the applied methods for
various fractional orders. Overall, these figures highlight the reliability
and robustness of the AADM and HPM in providing precise solutions for
nonlinear problems like the Degasperis-Procesi equation (see Table 1).

Example

Consider the fractional mCH equation is given as

PLP.v) 0 LB, oy HBv) 0L(B) PLP.v)
i e T AR Oy o7 op

)

(B, v)
8
- - : - - - ]
-6 -2 2 6
-05 /
/ p=1
qek f == ===== Exact
1.5
(b)
P*¢(B.v)
=&, 0)——— PYE =0, 0<p<l, (35)

with the initial condition

C(p,0) =2 sechz(g).

Applying the AT, we get

¢\ o 0%, 0) 2 0C(ﬂ D) 5C(ﬁ v) 0*¢(p,v)
A(avso)_A[%( PYERRG o opr )
0*¢(B,v)
o= 5 ] 36)

By utilizing the differential characteristic of AT, the result can be

obtained

1- —% a F}
M(u)=ué(ﬂ,0)+<%> [(’( T, g, K00
5 98B, v) 9*C(P,v) BB, v)
= () B

(37)
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By utilizing the inverse AT method, we have discovered a new approach
for obtaining the desired outcome.

_ 1 1—@+@u‘”> 0 9%¢(B,v)
L) =L(B.0)+ A [(—N(@) 55 Py )
6C(ﬁ v)

-3¢%(B,0) = —

0L (B,v) 02 aﬂ, v) 0¢(B,v)
2 % ( o5 )+ (B v) o ]}]

C(B,v) = (—2 sech2<§>>

L[ (1mp e 2 Pt )
A [( N@) ){A[av( oD
0Lp.) Pe.0) PLp.v)
+ 2 5L R 41,08 ]}]
38)

Through the implementation of HPM procedure, we have achieved
d -9+ qu®
]g)eké“k(ﬂ, v) = <—28€Ch2<§>>+ < A7l [ <%>
Z k0 13 (B, v))
op?
_32 2. u)Z VL U)>
o (9 978 (p,0)
+Z€ (B, “)Z g 0 ”>

2i kaék(ﬁ v) 2 kazék(lj,v)
k=0 op

(39

By examining the relationship between the coefficient of ¢ and other
factors, we can determine the correlation.

el Co(Pv) =2 sech2<§>,

el (p)=AT! < <—1 - f\[:“gf)"_@) 4 [ %(azgg;’j’ 2
~3¢5(.0) a&’;’;’ v

z%ﬁ’“)(ﬁg;f’ D) 4+ gy, L0 Cg;f 0 ] >
= —384 csch®(f) sinh6<§> (1 -+ %) .

Finally, the result of the series is presented as follows.

¢(B,0) = &P 0) + {1 (B, 0) + -

{(Pv)=-2 SBChZ(g) — 384 .csch’(f) Sinh°<§>
oo
8 (1_@+ F(@+1)> +

Utilizing the ATDM
Using the AT, we get

0%¢ 0 9%¢(p, v) ) 0L(B,v) . OL(B,v) I*L(P,v)
A{av—@} [ ( o -3¢*(B.v) % +2 % ( o )

(40)

+E(B.v)

’L. v)]
|
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By utilizing the distinct characteristic of AT, the result is obtained

1 _ . |o %@, 0¢(B,v)
(1_go+w—@){M(“)‘“W’O)}‘ [ ( o ) =382 (B, 0) = %
N(p)
5 9B V) *C(B,v) 03¢(p.v)
% (== Py )+ E(B.0) PYE ]
(41)
B 1—@+qpu® 9 0%L(p,v) 9L (P, v)
M(u)—ué(ﬁ,0)+<W>A[$( Py ) —3¢%(8,0) 2
9¢(p,v) 0*¢(B.v) %L (B.v)
2 % (——— YD )+ LB 0)——— |
(42)

By utilizing inverse AT, we are able to

1— @+ gu %
N(g)

C(Bv) = C(p,0)+ A" [ <

9¢(p.v)
9p
(B, v) 0*¢(B,v)

-32%(8.0)

9 0B, v)
{5
(

PL(p,v)
o g ) B ]}]

- -
¢B,v) = (—25€ch2<§>> +A7! [ <1$10V%>

0 2P0, 9L(B.0)
x{ [ s ) "W =00E
,95(B.0) PL(B.v) P¢(p,v)
T T R ]}]

The series approximation is expressed as

+2

43

£B0) =, Gul(Br0) (44)

m=0
. a v o0 J 92 v
with 2(.0)%88 = F= 4, KLOEELY) =
C(ﬁ l))d C(ﬁ“) ZDO

C,, are the Adomian polynomials which shows the
nonlmear terms, and

< 1- —% 2
3 Gu(.0) = £(B.0) = A™! [(M) { [i(’ GO
m=0

> B, and

m=0"—"m

N(%) op?
—32Am+228m+26m]}],
m=0 m=0 m=0
3 N ear( L)) am | (Lot
r;)(jm(ﬂ,v)—<25<:ch<5>> A [( T3 )
0 9%(p, v)
{5
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m=0 m=0 m=0

(45)

The both sides comparisons of gives the recursive method:

&Bv) =2 sech2<§>.

Onm=0

12
C1(ﬂ,v)=—384csch5(ﬂ)sinh°<§> (1_p+ gov )

I'p+1)

Lastly, the series type solution is given as

D GulB0) =GB v) + E1(B0) + e

m=0

{(p,0) =
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(b)

Fig. 3. Comparison of analytical and exact solutions at g =1 (a) the analytical solution of the Camassa-Holm Equation; (b) the exact solution of Example 1.

¢(8,v)

=1
~~~ Exact

(b)

Fig. 4. Comparison of exact and different fractional order analytical solutions (a) g =0.75 and (b) 1 of Example 1.

£(B,v) = =2 sech? ( ’%) — 384 csch®(B) sinh6<§>

goo®
1— -
X ( o r<@+1>> "
The exact result is

By =2 sechz(%) (46)

In Fig. 3, a comparison of the analytical and exact solutions at g = 1
for the Camassa-Holm Equation is presented. Subfigure (a) illustrates
the analytical solution obtained using methods like AADM and HPM,
while subfigure (b) displays the exact solution for Example 2. The
close resemblance between these two plots indicates the effectiveness
of the applied methods in approximating the exact solution. Fig. 4,
showcases the comparison of exact and different fractional order ana-
lytical solutions for Example 2, where subfigures (a) and (b) represent
the solutions at g = 0.75 and 1, respectively. The graphical compar-
ison reveals the accuracy of the fractional order analytical solutions,
demonstrating the adaptability and success of the applied methods for
various fractional orders. Overall, these figures highlight the reliability
and robustness of the AADM and HPM in providing precise solutions
for nonlinear problems like the Degasperis-Procesi equation.

Conclusion

In conclusion, the Aboodh Adomian decomposition method (AADM)
and Homotopy perturbation transform method (HPTM) have proven

to be powerful and versatile techniques in finding series solutions to
complex nonlinear problems. Through the application of these methods
to the Camassa—-Holm and Degasperis-Procesi equations, we have wit-
nessed their efficacy in handling intricate scenarios in mathematical
physics. The analytical solutions derived from these methods have
provided valuable insights into the behaviors of nonlinear wave prop-
agation, while also serving as useful tools in the prediction and under-
standing of various phenomena. Furthermore, these approaches have
demonstrated their potential in extending our knowledge on other
nonlinear partial differential equations. As the field of applied math-
ematics continues to evolve, the AADM and HPTM will undoubtedly
remain essential tools in the study of nonlinear problems, contribut-
ing to advancements in both theoretical understanding and practical
applications. In the future, researchers can extend the application of
AADM and HPTM to a wider range of nonlinear partial differential
equations, exploring new domains in applied mathematics and physics.
Additionally, incorporating advanced numerical techniques and com-
putational methods could enhance the accuracy and efficiency of these
approaches. Lastly, interdisciplinary collaborations can reveal novel
real-world applications, further highlighting the importance of these
methods in solving complex nonlinear problems.
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